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Abstract. Anonymous communication systems ensure that correspon-
dence between senders and receivers cannot be inferred with certainty.
However, when patterns are persistent, observations from anonymous
communication systems enable the reconstruction of user behavioral pro-
files. Protection against profiling can be enhanced by adding dummy
messages, generated by users or by the anonymity provider, to the com-
munication. In this paper we study the limits of the protection provided
by this countermeasure. We propose an analysis methodology based on
solving a least squares problem that permits to characterize the adver-
sary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Focusing on the particular
case of a timed pool mix we show how, given a privacy target, the per-
formance analysis can be used to design optimal dummy strategies to
protect this objective.

Keywords: anonymous communications, disclosure attacks, dummies

1 Introduction

Anonymization is a popular mechanism to provide private communications.
Anonymous communication [I] ensures that relationships between senders and
receivers of messages cannot be inferred with certainty by the adversary. These
schemes hide communication patterns by delaying and changing the appearance
of messages [2] in such a way that sent messages can be ascribed to a set of
potential receivers, often denoted as anonymity set. In practice, user behavior
and latency constrain the composition of anonymity sets, which in turn enables
an adversary observing the anonymous communication system to reconstruct
persistent user behavioral profiles [3/4U5]6].

A common approach to improve users’ protection against profiling is to
introduce dummy traffic, either generated by users [7] or by the anonymity
provider [8]. The effectiveness of this countermeasure has been studied theoreti-
cally from the perspective of individual messages in [9]. With respect to profiling,
dummy traffic has been tackled in [T0J5], where the authors empirically compute
the number of rounds that the attacker takes to correctly identify some or all



recipients of a sender. The analyses in [I0J5] are limited in two aspects. On the
one hand, the results strongly depend on the specific cases considered in the
experiments, and it is difficult to get insight on their applicability to other sce-
narios. On the other hand, the analyses only consider the ability of the adversary
in identifying communication partners, but not her accuracy at estimating the
intensity of the communication; i.e., the users’ profiles.

In this paper we propose an analysis methodology based on the least squares
approach introduced in [6] that permits system designers to characterize the
adversary’s profiling error with respect to the user behavior, the anonymity
provider behavior, and the dummy strategy. Our estimator can be used to char-
acterize the error for bilateral relationships, individual user profiles, or the pop-
ulation as a whole. Our approach can accommodate a wide range of high-latency
anonymous communication schemes providing the analyst with a bound on the
protection achievable through the use of dummy traffic.

Another shortcoming of previous works [QJT0I5] is that the proposed evalua-
tion strategies cannot be used to guide the design of effective dummy generation
strategies, which is recognized to be a hard problem [II]. This has lead the
deployed high latency anonymous communication systems to either implement
arbitrary dummy strategies [12] or no dummy traffic at all [I1]. Our method-
ology can be used to support the design of dummy strategies by approaching
strategy selection as an optimization problem in which the error of the adver-
sary is maximized. The optimization criteria can be chosen by the designer to
satisfy different privacy objectives, e.g., balancing the protection among users,
or favoring individual users or relationships.

We illustrate the operation of our methodology using a timed binomial pool
mix. We provide a performance analysis of this mixing strategy in presence of
both sender-based and mix-based dummy traffic, showing that their contribution
to the adversary’s error can be decoupled and analyzed independently. Departing
from this analysis, we design dummy traffic strategies according to two privacy
criteria: increasing the estimation error for all the relationships by a constant
factor, and guaranteeing a minimum estimation error for any relationship. By
hiding relationships, both criteria hinder adversary’s effort to infer user profiles.

Next section describes an abstract model of an anonymous communication
system with dummies. Section |3| introduces a least squares-based profile esti-
mator for dummy-based anonymization systems. We analyze in Sect. [4] the per-
formance of this estimator when the anonymous channel is a timed binomial
pool mix. The result of this analysis is used in Sect. [5| to design optimal dummy
strategies, evaluated in Sect. [f] We discuss practical aspects of our method in
Sect. [7] and finally conclude in Sect. [§]

2 System and Adversary Model

In this section we introduce the system and adversary model considered in the
paper, as well as the general notation of the paper (summarized in Table .
Throughout the document we use capital letters to denote random variables and



lower-case letters to denote realizations of those variables. Vectors and matrices
are denoted by boldface characters. Vectors of random variables are upper-cased,
while their realizations are lower cased. Matrices are always denoted by upper-
case boldface characters; whether they are random matrices or realizations will
be clear from the context. Furthermore, we use 1,, to denote the all-ones column
vector of size n, 1, ., to denote the all-ones n x m matrix and I,, for the n x n
identity matrix.

System Model. Our system consists of a population of IV senders, designated
by index i € {1,2,---, N}, which exchange messages with a set of M receivers,
designated by index j € {1,2,---, M}, through a high-latency mix-based anony-
mous communication channel. Messages in the system may be real or dummy
messages: decoy messages indistinguishable from real traffic. We consider two
types of dummy traffic:

— Sender-based dummies: senders may send dummy messages to the mix
along with their real messages. Sender-based dummies can be recognized and
discarded by the mix.

— Mix-based dummies: the mix-based system may send dummy messages
to the receivers along with the real messages from the senders. Receivers are
able to identify dummy messages and discard them.

Mix-based anonymous communication channels protect profiles by delaying
messages and outputting them in batch in what are called rounds of mixing.
We consider that the total number of messages generated by user i in round
r is modeled by the random variable X. User messages can be real, modeled
by random variable XY ;, or dummy, modeled by random variable Xj,. These
messages are sent to an anonymous communication channel in which a round of
mixing consists of the following sequence of four stages, shown in Fig.[I} In the
first stage, dummy messages are identified and discarded (Stage 1), while the real
messages go inside the pool (Stage 2). Messages inside the pool are delayed until a
specific firing condition is fullfilled, and then a number of them, chosen according
to a batching strategy, exit the pool. Messages leaving the pool (modeled by
random variable X{ ;) traverse a mixing block (Stage 3), which changes their
appearance cryptographically to avoid bit-wise linkability. Messages staying in
the pool are mixed with incoming real messages from subsequent rounds until
they are fired. Finally, in Stage 4, mix-based dummies are added the output
traffic and messages are delivered to their recipients. The number of mix-based
dummies sent in round r is modeled by Xyrx, and random variables Yy ;, Yy, and
Y model the number of real, dummy, and total messages received by receiver j
in round r, respectively.

We also define the following vectors and matrices, which shall come handy
later: matrix U is an p x N matrix which contains all the input observations, i.e.,
its (r,4)-th element is X7. Similarly, matrix U, contains in its (r,4)-th position
the random variable X;”2 Moreover, H = Ij; ® U and H; = I, ® U, where
® denotes the Kronecker product. Vectors Y; = [le, e ,Yf 17 and Yg,j =

(Y Yy j]T contain the random variables modeling the total (or just dummy)
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.1: Abstract model of a round in a mix-based anonymous communications
nnel (we omit the subscript r for the sake of clarity.)

number of messages received by j in each round. Finally, Y = [YT,... | YT ]T
and Y45 = [ngl, S ,ngM]T.

We model the sending behavior of users in our population with two param-

eters:

Probability of real message: the probability of real messages models how
frequently users send real messages, and is denoted by Py, ,7 = 1,---, N.
In other words, a message sent by ¢ is real with probability Pj,, dummy
otherwise. We make no assumptions on the values of Py, other than 0 <
Py, <1, and that the probabilities of real messages are stationary during
the observation period. Note that Py, does not constrain the distributions
that model the number of messages sent by users (X7, X5, and X7 ).
Sender profile: the sender profile of user i models this sender’s choice of re-
cipients for her messages. It is defined as the vector q; = [p1 .4, D24, - - ,pM,i]T
where p;; denotes the probability that sender i sends a real message to re-
ceiver j. We also define the unnormalized receiver profile p; = [p;1, -+ ,pjn]T
and the vector containing all transition probabilities p = [p7,--- ,p%,]T. We
make no assumptions on the shape of the sender profiles other than q; is in P,
the probability simplex in RM, i.e., P = {r eRM :r; >0, sz\i1 Ty = 1}. We
assume, nevertheless, that users’ behavior is stationary during the observa-
tion period (the transition probabilities p;; do not change between rounds),
independent (the behavior of a user does not affect the behavior of the oth-
ers) and memoryless (the messages sent by a user in a round do not affect
the behavior of that user in subsequent rounds). We discuss the implications
of the hypotheses above being false in Sect.

)

The behavior of the mix-based anonymous communication channel is mod-

eled by four parameters:

Firing condition: the firing condition is an event, e.g., the arrival of a
message (theshold mix) or the expiration of a timeout (timed mix), that
causes the mix to forward some of the messages it has stored in its pool to
their recipients.



— Batching strategy: the batching strategy models how messages are chosen
to leave the pool. This strategy is determined by the function F, j, which
models the probability that a message arriving in round k leaves the mix
in round r (r > k). We do not make any assumption on the values of these
parameters, other than Y, F, = 1, i.e., every message will eventually
leave the pool and get to its recipient. This function can for instance model
a threshold mix (Fj ; = 1), or a binomial pool mix [I0/5].

— Average mix-based dummies: this parameter, denoted as dy1x, defines
the average number of dummy messages generated by the mix each round.
Note that our model does not assume any specific distribution for the number
of mix-based dummies that are generated each round.

— Mix dummy profile: we denote by qurx the vector modeling the distribu-
tion of mix-based dummies among the receivers, qurx = {p1 mx, P2.u1x, - -, PAMIx }
where p; urx is the probability that a dummy message generated by the mix
is sent to receiver j (qumx € P).

Adversary Model. We consider a global passive adversary that observes the
system during p rounds. The adversary is able to see the identity of each sender
and receiver communicating through the mix, but she is not able to link any two
messages by their content nor distinguish between real and dummy messages.
We assume that the adversary knows all the parameters of the system (e.g., the
batching strategy determined by F) j, the parameters modeling the generation
of dummy messages Py, and dwrx, the mix dummy profile qurx). The goal of
the adversary is to infer the sending profiles of the users in the system from
the observations, i.e., to obtain an estimator p;; of the probabilities p;; given
the input and output observations z} and yf, for every i € {1,2,--- N}, j €
{1,2,--- M} and r € {1,2,--- | p}.

3 A Least Square Profile Estimator for Dummy-based
Anonymization Systems

We aim here at deriving a least squares estimator for the probabilities p;; for
everyi=1,2,--- ,Nand j=1,2,--- , M, given the the observation of p rounds
of mixing, z; and yj for r = 1,---,p and V4, j. Following the methodology in
[13], we derive the estimator of p;; by looking for the vector of probabilities p
which minimizes the Mean Squared Error (MSE) between the random vector Y
and the observed realization y:

p= argmin E{|ly—Y(p)[?} (1)
qi€P,i=1, ,N

where we have written Y(p) to stress the fact that the output distribution
depends on all the transition probabilities p. Note that, for notational simplicity,
we are dropping the conditioning on U here. Even though the estimator in
minimizes the average error in the outputs, this does not mean it necessarily



Table 1: Summary of notation

Symbol Meaning

N Number of senders in the population, denoted by i € {1,2,--- ,N}

M Number of receivers in the population, denoted by j € {1,2,--- , M}

Fri Probability that a message arriving in round k leaves the mix-based system in round r
Dj,i Probability that user ¢ sends a real message to receiver j

PjMIX Probability that the mix sends a mix-based dummy message to receiver j
qi Sender profile of sender 4, q; = [p1,i,P2,is- - »Pai)"

quIx Mix dummy proﬁle, qQuix = [pl,Mlx,pQ,MIx, te ,pM,Mlx]T

joF Unnormalized receiver profile for receiver j, p; = [pj1,pj2, - »DiN]"

P Vector of transition probabilities, p = [pf,Pa, - ,Pag)”

P, Probability that user i sends a real message instead of a dummy

Outx Average number of mix-based dummies generated by the mix each round
P Number of rounds observed by the adversary

x;,i(mg,i)
Z;
T

Number of real (dummy) messages sent by user ¢ in round r
Total number of messages sent by user ¢ in round r, x; = 3 ; + x5,

Ty Number of real messages sent by user i that leave the pool in round r
yx,;(¥5;) Number of real (dummy) messages received by j in round r

yi Total number of messages received by j in round 7, y; = yx ; + ¥5,;

Tutx Number of mix-based dummies generated by the mix in round r

U (Us) p x N matrix containing all input observations (U),; =z ((Us)r: = x5 ;)
HH, In®U (IyeUs)

Y Column vector containing the values y; for r =1,---,p

Y5, Column vector containing the values y3 ; for r =1,---,p

y Column vector containing all the output messages y = [y?, yi, .. ,yﬂ]T
Ys Vector of output dummies ys = [y31,¥s2: > Yol

Dj.i, Pj, P, Adversary’s estimation of p;,, p; and p, respectively.

Y5, ¥s,j Adversary’s estimation of y;s; and ys.

ﬂs, fIS Adversary’s estimation of U and Hs.

minimizes the error in the estimation of the probabilities p. As shown in the

derivations in [I3], one can set the alternative problem

p= argmin N{||Y*E{Y(P)}H2} (2)

QGEP, i=1,,

in order to get an estimator p that is not only unbiased, but also asymptotically

efficient, i.

e., the vector of estimated probabilities p converges to the true value

as the number of observations increases p — co.
From the relations among the variables in Fig. [, we can compute the ex-
pected value of the output Y(p) given the input observations U obtaining

E{Y(p)}
_ I:IS -

=H, -p+¥s (see Appendix), where

Iy ® U,, and U, (see (31)) is the matrix containing the attacker’s

estimation of the hidden random variables X{ ;, which model the number of
messages from user i that leave the mix in round r (cf. Fig. [I).



— ¥s is the adversary’s estimation of the number of mix-based dummies that are
sent to each receiver in each round, and is given by y5 = (Ins ® durx1,) - Quix-

Interestingly, removing the constraints from leads to an estimator which
is still unbiased and asymptotically efficient, as proven in [I3], and also makes a
detailed performance analysis manageable as we show in Sect. [d In the rest of
this section we focus on the unconstrained estimator and refer to [I3] for further
information about the constrained variant. The solution to the unconstrained
problem
p= argmin {|ly — H.-p-ysl} ®)
q; i=1,-- ,N
—1 N
HY (v —s)-
This solution can be decoupled [I3] resulting in a more tractable and efficient
equation,

is given by the Moore-Penrose pseudo-inverse, i.e., p = (ﬂfﬂg)

N1
pj = (UsTUs) Ul (v — 9s.4) j=1-- M (4)

where ¥5; = dumxpjmixl, contains the expected number of mix-based dummies
sent to receiver j in each round. Given the system parameters as well as the
input and output observations U and y, the adversary can use to get an
estimation of the users’ sending profiles.

4 Performance Analysis of a Dummy-based Timed Pool
Mix Anonymous Communication System

In this section, we assess the performance of the least squares estimator in
with respect to its profiling accuracy, measured as the Mean Squared Error of
estimated transition probabilities p;; (MSE;; = [p;,i — pjﬂ»|2) representing users’
behaviour. We consider the particular case when the anonymous communication
channel is a binomial timed pool miz [14], and the number of messages sent by
the users, as well as the dummies generated by the mix, are Poisson-distributed.
In a binomial timed pool mix, the firing condition is a timeout and the batching
strategy mandates that individual messages leave the pool with probability «
every round, i.e., F,.x = a(l — «)"~*. The behavior of this mix is stationary,
since the value of F}. j only depends on the difference r — k. This scenario can
be summarized as

X}~ Poiss(\;), X, ~Poiss(d;), Xyrx ~ Poiss (dux)

(5)
P)\i = >\z/(>\z + 51), Fr,k = a(l — Oé)rik

where )\; is the sending rate, and §; is the dummy rate, representing the average
number of real messages, respectively dummies, sent by user i. Even though
the results we provide correspond to the above case we must stress that the
reasoning followed in the derivation is applicable to any other system that can
be represented by the model in Sect.



4.1 Profiling error of the least squares estimator

Under the hypotheses stated in , the least squares estimator is unbiased and
the MSE; ; of a single transition probability estimated is given by [15]:

11 1 5 X +6;
poag A Ai Zk:l(/\k + 0k)

N N
Qq 2
(Z AkDjk + Ourxpjurx — o Z )\kp)\kpj,k>

k=1 " k=1

.« . al2-a)
where Qg = m and Qy = m

ability that each sender sends a message to receiver j is negligible when com-
pared to the rate at which receiver j receives messages from all users (p;; <
>k AkPjk), ii) the number of rounds observed is large enough (p — c0), and iii)
2
N+ 6 K (Zk(/\k + (5;.;)) .
Interestingly, the terms in @ that depend on 4 and j in can be decoupled:

. This result holds when: i) the prob-

1 1
MSE.,, ~ — - — -€.(7) - 1
SE; ; P oy €s(1) - e (4) (7)
where €4(7) and €,.(j) denote functions that only depend on the sender 7 and the
receiver j respectively. This property proves to be very useful when designing
strategies to distribute the dummy traffic as we later see in Sect. 5]

The latter expression allows to extract qualitative conclusions on the protec-
tion dummy traffic offers to senders and receivers. As it was already shown in
[13], the MSE decreases with the number of rounds observed as 1/p, and delay-
ing messages in the pool increases the MSE; ; by a factor (2 — «)/a with respect
to an scenario with no delay (i.e., a =1).

We now analyze the contribution to the MSE of the users’ behavior. The
sender-side contribution €4(7) consists of three terms:

o1 12 ) o Nte
68(2)_>\z’ (1+>\i) (1 Zg_l()\k‘f‘ék)) "

1. The term 1/); implies that the error when estimating the profile q; =
P14, - ,pM’i]T decreases as that user participates in the system more often.
Naturally, when more information about the user becomes available to the
adversary, it becomes easier to accurately estimate her behavior.

2. The second term, 1+40;/);, is always larger or equal than one, meaning that
sender-based dummies always hinder the attacker’s estimation. The weight
of this component depends on the ratio between the dummy rate and the
sending rate. Hence, a user who sends real messages very often would need
to send a many more dummies to get the same level of protection than a
user who rarely participates in the system.



3. The last term is in general negligible since, in a normal scenario, the partic-
ipation of a single user is negigible when compared to the total traffic, i.e.,
i +6; < Z,ivzl(/\k + dx). However, when user 4’s traffic is clearly dominant
among the others, this term decreases the overall gain ¢ gets from dummies.
Therefore, although sender-based dummies always increase the protection of
a user, they offer diminishing returns when only one user is trying to protect
herself by sending dummies.

On the other hand, receiver-side contribution, €,(j), consists of three sum-

mands:
N N

. «
er(§) = Y Ak + Ourxpjurx — qu D APap (9)
k=1 " k=1

1. The first summand is the rate at which j receives real messages from the
senders. We call this term receiver rate and denote it by )\;. It is interesting to
note that, contrary to the sending rates where large values of A\; compromise
the anonymity of the senders; large values of receiver rates increase the
protection of the receivers. In other words, it is harder for the attacker to
estimate probabilities related to a receiver which is contacted by a large
number of senders than related to one receiving few messages.

2. The second summand is the rate at which j receives dummy messages from
the mix. The interesting part about this summand is that it can be adjusted
by the mix, to give more protection to a specific receiver j by increasing the
number of dummies addressed to that recipient, i.e., increasing p; urx.

3. The last summand depends on the mix parameters and the users’ behavior.
Since ay/a, < 1 and Py, < 1, when users do not focus their messages
in few others, i.e., p;; < 1, this summand becomes negligible. However, if
there is no dummy traffic (Py, = 1 and durx = 0) and no pool is implemented
(cg/cr = 1), this term must be taken into account. In this case €,(j) depends
on the variance of the outputs, i.e. Zszl Akpj k(1 — pj k), meaning that it
would easier for the attacker to estimate probabilities p; . of receivers that
get messages from senders whose behavior has low variance (i.e., senders
that always choose the same receiver, p;; = 1, or users that never send to
a receiver, p;, = 0). Adding delay or introducing dummy traffic increases
the variance of the output, thus reducing the dependency of the error on the
sending profiles.

The fact that we can differentiate the contribution of ¢ and j in @ also allows
for a graphic interpretation of the adversary’s estimation error. Figure [2al repre-
sents the values of MSE; ; as a function of ¢ and j, in an scenario without dummies
where for simplicity we have assumed that the sending rates are distributed in
ascending order according to the senders’ index ¢, and the receiving rates are
distributed in descending order according to the receivers’ index j. Fig. 2b]shows
the average MSE;; over j and i, offering a comparison with a system where the
distribution of the dummies is uniform in both the input and output flows: €4(7)
determines the evolution of MSE;; with ¢ (top) and €,(j) the evolution with j
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Fig.2: (a) MSE;; as a function of ¢ and j in an scenario where \; are sorted
in ascending order and )} in descending order. (b) Comparison of the average
MSE; ; along j and ¢ with and without dummies. (N = 100, M = 100, p = 10000,
o = 05, Z )\k = 500. In (b), 5SEND = 5MIX = 250)

(bottom). This means that by distributing dummies among sender-based and
mix-based dummies, which in turn modify the value of e4(i) and €,.(j), we can
shape the MSE; ;. We use this idea in the next section to design dummy strategies
that satisfy different privacy criteria.

5 Designing Dummy Traffic Strategies

In this section, we study how to distribute dummy traffic in order to guarantee
different privacy criteria. In other words, we aim at finding the values of the
parameters ¢; for ¢ € {1,--- , N} and p;urx for j € {1,---, M} that maximize
a certain cost function representing some privacy objective. We assume that
the total number of dummies drpr that can be sent on average per round is
constrained. We denote the average number of sender-based dummies on each
round as dgenp = Zf\il d;, and the average number of mix-based dummies as
durx- We put no restriction on the distribution of dummies among senders and
mix other than dggyp + durx < dror. For notational simplicity, in the reminder
of the section we omit the constraints 0 < pjux < 1, Zjle Pjmmx, 0; > 0 and
Z?]:l 0; = dsep in the equations.

In order to keep the optimization problems tractable, we assume that the
contribution of a single user to the total input traffic is negligible (i.e., A\; +0; <
ZkN:1(>\k + 0)) and that users do not focus their traffic in a specific receiver
(i.e., pj; < 1). In this case, we can approximate @ as:

1 1 i
L (1 + ) . ()\; + 5M1xpj,MIx) =

1 T _ ., ..
; .\ s ’OT'GS(Z)‘GT(J) (10)
q N i q

=



where X = SN Akpjk is the receiver rate of j.

5.1 Increasing the protection of every sender-receiver relation by
the largest factor 3 given a budget of dummies gt

In this section we design a dummy strategy that, given a budget of dummies
dOror, increases MSE; ; of each transition probability p;; by a factor 5 > 1 as large
as possible with respect to the MSE when there are no dummies, denoted by
MSE?,I». Departing from we can formalize this problem as:

maximize I@Ej,i, Vi, j
01, ,0N ,QuIx
— ——0
subject to MSE;; =3 - MSE,; ;, Vi, j (11)

dsenp + Ourx = Otor

Since the effects of the sender-based and mix-based dummies can be decoupled,
we can split the optimization into three subproblems:

1. Find the distribution of §; that increases é4(i) by a factor Ssgyp for all i.
2. Find the distribution of p;urx that increases €.(j) by a factor Surx for all j.
3. Find the distribution of drgr between dggyp and dyrx that maximizes the overall

increase 8 = Bsgp - Burx-
Optimal distribution of sender-based dummies We want to find the dis-
tribution of §; among senders that increases €;(i) by a factor Sseyp compared to
the dummy-free case. Since (i) = 1/\; (1 + %), sending §; dummies increases
the MSE in a factor Bsgxp = 1 + d;/A;. We can now obtain the sender based
dummy distribution, ensuring the that Zivzl &; = Osenp, as follows:

] i .
Bsenp = 1 + 7]\5,“]) = 0; = —x—— " Osem, Vi (12)
k=1 Ak k1 Mk

This confirms the intuition given in Sect. [d] that the number of dummies a
user should send to achieve a certain level of protection is proportional to her
sending rate of real messages.

Optimal distribution of mix-based dummies Similarly, we want to find
the distribution of p;ux among receivers that increases €.(j) by a factor Burx
compared to the dummy-free case. Since €.(j) = )\9 + durxpjmix, assigning send-
ing dummies with probability p;ux to receiver j increases the MSE by a factor
Burx = 1 + Surxpjurx/ /\;-. We can now obtain the sender-based dummy distribu-

tion, ensuring that Zjle pjmx = 1, as follows:
6MIX )\/'

_ J :
W = DjMIx = W7 Vj (13)

As said in Sect. [4] the protection that receivers enjoy is proportional to their re-

ceiving rate. Therefore, to increase all MSE; ;s by the same factor, more mix-based
dummies have to be given to those receivers that receive more real messages.

Burx = 1+



Optimal distribution of the overall amount of dummies Using the dis-

tributions obtained, and since Zszl Ae = M N we can write MSE;; as

!/
m=1"m>

Mgﬁj,i = ﬁgﬁ?,i - Bsenp + Purx = P@E?,i <1 + istle) (1 + i;m> (14)
k=1 "k Zk:l Ak

The distribution of the total amount of dummies that maximizes the increase in
I‘ZS\EM is therefore dsewp = durx = dror/2. This result is particularly interesting:
if we are to increase the relative protection of each user equally, the protection
we get from sender-based and mix-based dummies is the same regardless of the
system parameters. That is, assigning all our available dummies to the senders
or to the mix is equivalent in terms of MSE, and distributing the dummies evenly
between the input and output flow is optimal, being the maximum achievable

2
gain f ~ (1 + 2%,0;%) .

5.2 Increasing the minimum protection to every sender-receiver
relation given a budget of dummies g7

Our second design strategy consists in ensuring that, given a budget of dum-
mies drgr, the distribution maximizes the minimum level of protection for all
relationships in the system. This implies that dummies are assigned to senders %
and receivers j in relationships whose estimation error MSE;; is low, in order to
increase the minimum MSE;; in the system. From a graphical point of view, we
can see this as a two-dimensional waterfilling problem: we need to increase the
lower MSE; ; in Fig. @ up to a minimum, which can be larger as more dummies
drgr are available. More formally, we want to solve:

maximize min I‘EEM

01, 0N ,Qurx 2% (15)

Subject to 5SEND + 5MIX = 5T0T

As in the previous problem, we can separate the problem in three steps:
1. Find the distribution of ¢; that maximizes min €4 ().
K3
2. Find the distribution of p; urx that maximizes min €. (j).

J
3. Find the distribution of drgr among dggyp and dyrx that maximizes the mini-
mum MSE;; in the system.

Optimal distribution for sender-based dummies We aim at finding the
distribution of J; among senders that increases the minimum value of & (i) =
% 1+ i—) over ¢, making it as large as possible given the budget of dummies.
This subproblem can be formulated as

maximize min €(7)
01,0+ 0N i

N (16)
subject to Z (S»L = 5SEND

i=1



Let A be the set containing the indices of those senders to whom we assign
dummies, i.e., A = {i : §; > 0}. Let € uy be the minimum value of é;(i) we
achieve with this strategy. Then, the following statements are true:

— We do not assign sender-based dummies to those users k whose ég(k) >
€5 my Without dummies; i.e., we only use sender-based dummies to help users
achieve that minimum.

— There is no gain in assigning dummies to a user k if by doing so we are
increasing és(k) above any other €(7); i.e., every user k € A fullfills é,(k) =

€5 MIN-

. - . N
Given €,(k) = € um, and to ensure > ;" 0 = D, 40k = Jdsenp We can get
an expression for €g wry:

- 1 Ok - OsEnD + D pea Mk
s = — 1 —_— —t s = 2T LkeATR 17
o < " Ak) o Dhea M ()

In order to compute A, we assume w.l.o.g. that the indices are given to users
such that their sending frequencies are sorted in descending order, Ay > g >
-+ > Ay and we let A; = {1,2,--- ,i}. Then, A = A,, where n is the minimum
value that meetdl]

1 0, + A 1
1. SEND Zke én k < (18)
>\n ZkeAn )\k /\n+1
Finally, we assign
)\i )\2 Ns -1 9 f ' n
5i: ( G,MIN ) 1264 (19)
0, otherwise.

Optimal distribution for mix-based dummies Similarly, we aim at finding
the distribution of p; urx among receivers that increases the minimum value of
€-(j), making it as large as possible given the budget of dummies. The problem
can be formulated as:

maximize  min &.(j)
P1,M1x, P M MIX J

M (20)
subject to ZPJ}MIX =1
j=1

where €,(j) = )\;- + Surxp; Mrx-

We define the set B as the send of receivers that get mix-based dummies,
B = {j : pjurx > 0} and the minimum value of our optimization function we
achieve with this strategy as €.wmy. Then, following the procedure described

above, we get
5 B 5M1x+zjeg )\;
67‘,1"[11\1 - T (21)

L If the condition is not met because all 1/An < €spum(Ar), then we can assume that
n = N, i.e., all users will send dummies.



where |B| denotes the number of elements of B. If the receiver rates are sorted
in ascending order, A} < Xy <--- < Xy, and B; = {1,2,---, 7}, then the set of
receivers that receive dummy messages is B = B,, where the value of n is the
smallest that meets

b+ Syen X,

N < B < Anj1 (22)
Finally, we assign
1 . p e
Drx = m (GT,MIN - )\j) , ifjeB, (23)
0, otherwise.

Optimal distribution of the overall amount of dummies In this case we
cannot get a closed-form expression for the optimal distribution of drgr among
dsenp and dyrx, since it depends on the sizes of the sets A and B. The minimum
I‘@Em— we achieve is for relationships where both sender and receiver are allocated
dummies, i.e., i € A and j € B. Hence we can obtain this minimum by plugging

the distributions and into , obtaining

— 1 1 6 A 6 N
minMEE = - - — - SEND T D _pea ko MIx + D meB Am (24)

Jst P Qq ZkeA )‘i |B|

Optimal values for dsgyp and dyx can be computed by performing an ex-
haustive search along dsenp + durx = dtor, computing each time the sets A and
B as explained above. It is interesting to note that, if the number of dummies
available is large enough, i.e., drgr — 00, every sender and receiver is assigned
dummies. In this case, since Zi\;l A = Z%Zl AL, the optimal strategy would
be to distribute the total amount of dummies evenly between the input and the
output traffics, i.e., dsgnp = durx = dror/2

6 Evaluation

In this section we evaluate the performance of the dummy traffic design strategies
designed in Sect. and validate them against the theoretical bound for the
adversary’s error in @ through a simulator written in the Matlab languageﬂ
The scope of this analysis is focused on supporting our theoretical findings rather
than comparing our estimator with existing attacks. The only attack in the
literature extended to cover dummy traffic is the Statistical Disclosure Attack
(SDA) [MIJI0] and it is already shown in [?[I3] that the least squares-based
approach performs asymptotically better than SDA. It must be noted that the
Bayesian inference estimator (Vida) in [4] may return a better estimation than
our least squares estimator. However, its computational cost is huge even for a
threshold mix [13] and it would become prohibitive in a pool mix with dummies.

2 The code will be available upon request.



Experimental Setup. We simulate a system with NV = 100 senders and M =
100 receivers. The sending frequencies of the users are sorted in ascending order,
in such a way that \; is proportional to ¢, and the average total number of real
messages sent by all users is > \; = 500. The sending profiles q; are set such
that user ¢ sends messages to herself and all other users k < ¢ with the same
probability, i.e., pj; = 1/i if j < i and p;; = 0. This ensures that receiving
rates A are sorted in descending order. The probability that a message is fired
after each round is set to & = 0.5, and the number of rounds observed by the
attacker is p = 10000. The theoretical MSE; ; for this scenario without dummies
is shown in Fig. Though not realistic, this experiment is sufficient to illustrate
the operation of the strategies in Sect. o} The amount of dummies that users
and mix send and their distribution change between experiments. We run four
experiments, two for each dummy strategy in Sect.[5] We repeat each experiment
200 times and plot the average results.

6.1 Increasing the protection of every sender-receiver relation by
the largest factor 3 given a budget of dummies ot

First, we study the influence of the distribution of dummies among senders and
mix in the factor 8 that can be achieved with this strategy, when on average
drgr = 500 dummies per round are available. Figure shows the evolution of
B for different distributions of dummy messages between senders (Jdsgnp) and
mix (durx). We see that the maximum increase is achieved when dummies are
divided equally between the senders and the mix, as predicted in Sect. We
note that the maximum £ in the figure is slightly higher than § = 2.25 that
would be obtained using the approximation used to design the dummy
traffic strategy, meaning that the adversary estimation is worse than predicted
by the theory.

For the particular case where dsgyp = dmrx = dror/2, we plot in Fig. the
average MSE;; over ¢ (top) and j (bottom) with and without dummies (note
the vertical axis logarithmic scale). We see that indeed all MSE; ; increase by a
constant factor, 5 = 2.261. The figure also shows that @ accurately models the
profiling error.

6.2 Maximizing the minimum protection to every sender-receiver
relation given a budget of dummies dqr

First, we study the influence of the distribution of dummies among senders and
mix on the maximum minimum MSE;; that can be achieved with this strategy,
when on average drgr = 500 dummies per round are available. Fig. shows
the evolution of the average minimum MSE;; depending on the distribution of
dummies between the senders and the mix. In the scenario considered in our
experiment, the maximum minimum MSE; ; achievable is obtained when approx-
imately 40% of the dummies are assigned to the senders and the remaining 60%
to the mix. This is because, in this strategy, the rate of sender-based dummies
depends quadratically on the real sending rate (c.f. ), while the number of
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Fig. 3: (a) Evolution of 8 with the fraction of dummies distributed among senders
and mix. (b) Average MSE, ; evolution over ¢ (top) and j (bottom) when dummies
are distributed uniformly among senders and mix. (N = 100, M = 100, p =
10000, a = 0.5, dror = 500)

mix-based dummies depends linearly on the real receiving rate (c.f. ) Hence,
mix-based dummies can be distributed more efficiently and it is preferable to as-
sign the mix a larger budget than to the senders. We note that this result depends
strongly on the users behavior. In fact, if the real traffic is distributed uniformly
among receivers but few senders generate the majority of the traffic, allocating
a large fraction of dummy traffic to the senders becomes the best option.

This is better shown in Fig. The top plot shows the MSE;; along ¢
when there are no dummies, and when only sender-based dummies are avail-
able (dsgnp = dtor; Omrx = 0). As expected, more dummies increase the minimum
MSE; ;, but, since the average number of sender-based dummies depends quadrat-
ically on the real sending rate, few senders with high rates exhaust the budget,
which constrains the maximum minimum error achievable in the system. On
the other hand, allocating all the dummies to the mix (Fig. bottom) allows
to spread the distribution of dummies among more relationships, which in turn
provides better overall protection than the previous case.

7 Discussion

In this section we discuss how to adapt the derivation of the least squares esti-
mator in Sect. [3] to scenarios where pool and users’ behavior are outside of the
model considered throughout the document.

Non-stationary sending profiles. In practice users’ behavior is expected to
change over time. Our estimator can be adapted to account for dynamic profiles
by implementing the Recursive Least Squares algorithm [16]. This algorithm
includes a forgetting factor, which determines how fast the algorithm “forgets”
past observations. Tuning this parameter, one can choose between getting a high-
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Fig.4: (a) Evolution of the minimum MSE;; with the fraction of dummies dis-
tributed among senders and mix. (b) Average MSE;; evolution over ¢ when only
sender-based dummies are available (top), and j when only mix-based dummies
are available (bottom). (N = 100, M = 100, p = 10000, o = 0.5, drgr = 100, 500)

variance estimator of the recent users’ sending profile or obtaining a more stable
long-term sending profile.

Non-independent users with memory. Although our model considers dis-
joint sets of senders and receivers, it can easily accommodate the case where users
both send and receive messages. In this scenario, users’ sending behavior may be
dependent on messages sent or received in the past (e.g., email replies). Given a
model of these interactions between users one can compute the expected value of
the output observations given the inputs, and then proceed with the derivation
of the estimator as in Sect. [3

Non-stationary dummy strategies. If the probability of sending a real mes-
sage (Py,) changes over time, a per-round probability P} could be defined. This
dynamic probability can be used in the derivations in the Appendix (c.f. (30))
to account for the effect of this variation on the attacker’s estimation of the
hidden variables X;l When the average mix-based dummies (dyrx) or the mix
profile (qurx) vary over time, an aware attacker can include this behavior in ,
modifying the expected value of the outputs.

Complex batching strategies. Our anonymous channel model does not cover
pool mixes whose batching strategy depends on the number of messages in the
pool, such as that used by Mixmaster [12]. However, extending our model to this
scenario is straightforward: the adversary can estimate the average number of
messages in the pool by discarding a percentage of the incoming messages that
are expected to be dummy, and therefore she can get an estimate of the average
number of messages from each user that leave in each round, X¢ ;. The estimator
would still be formulated as .



8 Conclusions

In this paper, we have proposed a methodology to analyze mix-based anonymous
communication systems with dummy traffic. Following a least squares approach,
we derive an estimator of the probability that a user sends messages to a re-
ceiver. This estimator allows us to characterize the error of the adversary when
recovering user profiles, or individual probabilities, with respect to the system
parameters. Furthermore, it can be used to design dummy strategies that satisfy
a wide range of privacy criteria.

As an example, we have studied the performance of the least squares es-
timator on a timed binomial pool mix, which enables us to derive qualitative
conclusions about the effects of dummy traffic on the adversary’s error. We have
used this estimator to design dummy strategies that, given a budget of dum-
mies, achieve two privacy targets: increase the protection of each sender and
receiver relationship equally, and maximize the minimum protection provided
to any relationship between users. The empirical evaluation of these strategies
validates our theoretical results and confirms the qualitative intuitions drawn in
the performance analysis.

Our methodology improves our understanding on the effect of dummy traffic
on privacy in anonymous communication systems. It can be seen as a step for-
ward towards the development of a systematic method do design dummy traffic,
especially important to evaluate and improve privacy protection in deployed
mix-based systems such as [ITI12].

Appendix A: Derivation of the expected value of the
output messages given the inputs.

We aim here at deriving an expression for the expected value of the random
vector of the output observations Y (p) given the input observations U, i.e.,
E{Y(p)|U}. For simplificy, we assume that by the time the adversary starts
observing the system the pool is empty. In practice, the initial messages in the
pool would appear as noise in the initial output observations and its effect can
be disregarded when the number of observations in large, as explained in [I3].
For notational simplicity, we also omit writing the conditioning on U explicitly.

In order to relate in a statistical way the input and output flows of the mix,
we follow the abstract model for the timed pool mix in Fig. [1 The different
variables in this model can be related backwards in the following way:

— The number of output messages for receiver j in round r is Y/ =Y, +Y5,.
We can model the components refering to the real and dummy messages as:
e Given the messages exiting the pool block z{ ; for every sender i, the
number of real messages leaving the mix Yy, for each receiver j is the

sum of N multinomials:

N
{Y)T,lv t aY)CM I;J? e 7IZ,N} ~ Z Multi (:C::,ia ql) (25)
1=1



where q; = [p1i,- -, pari]”
e Likewise, given the number of mix-based dummies generated in round r,

Tyry, Y3 for j=1,---, M can be modeled as:

{Yg:lv T 7Y57:M| l’glx} ~ Multi (2yry, Qurx) (26)
where quix = [prmx, - - ,pmux|’. Later, we use the following result:

E {Yg,]} = E{Xix} - pjmx = Owrx - pjmox-

— The messages leaving the pool from user ¢ in round r, X{ ;, may come from
any of the real messages sent by that user in the current and previous rounds.
We can write X[ ; = 371, X;Zk , where X;Zk is the random variable modeling
the number of messages from user ¢ that were sent in round k and leave the
mix in round r (r > k). These random variables can be modeled, given the

number of real messages sent by ¢ in round r, z ,, as:
.

{Xf,’ikva;l’ky o XETRE ‘ fﬂ]iz} ~ Multi (ﬂﬂliw {Frkes By s Fhgey oo }>
(27)
— Finally, given the total number of messages from user i that were sent in
round r, x], we can model the number of real messages sent in that round
X3, as
We now compute E {Y(p)}. First of all, from and (26)), we get
E{Y;(p;)|Us} = Us - pj + durx1, - pjyx
and, therefore, E{Y (p)|Us} = Iy ® Us) - p + (Ins ® urx1,) - Qurx. Using this
last equality together with the law of total expectation, we can write
E{Y(p)} = E{E{Y(P)|Us}} = (In @ E{Us}) - p + (Inr ® durx1,) - amrx (29)

For notational simplicity, let y5 = E{Ys} = (Ins ® durxl,) - durx be the
attacker’s estimation of the number of mix-based dummies sent each round.
Likewise, let U, = E{Us} be the estimation the attacker makes of the non-
observable random matrix U, and I:IS = I ® E{U;}. In order to compute an
element of U, i.e., g,
the relations above

i, =B{X1,|U} = > B{ X}
k=1

we use the law of total expectation repeatedly applying

Xip=aip =Y B{B{x0}
k=1

= ZE{X§1| Xi=ai} Frgp = foPAiFr,k (30)
k=1 k=1

sz}‘XlZc = xf}

For compactness, we define the p X p matrix B, which contains in its (r, k)-
th position the value F.j if r > 0 and 0 otherwise; and the diagonal matrix
P, = Diag{P»,, P»,, -+ , Pr»y}. Then, we can write

U,=B.U-P, (31)



Plugging into (29), we get E{Y(p)} = (IM ® ﬂ5> ‘p +ys; with y5 =

(In ® Gurxl,) - Qurx and U, in (31), which concludes the proof.
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